Design for Validation

Sally C. Johnson
Ricky W. Butler

NASA Langley Research Center
Hampton, VA 236655225 *

Abstract

The use of computer hardware and software in life-
critical applications, such as for civil air transports, de-
mands the use of rigorous formal mathematical validation
procedures. However, formal specification and verifica-
tion will only be tractable if the system is designed in
a manner that lends itself to formal methods. Likewise,
accurate reliability analysis will only be tractable if the
number of interacting components that must be individ-
ually included in a single reliability model is kept to a
low number and if their failure behavior interactions can
be modeled simply. Also, the system must be designed
such that the system reliability does not directly depend
on system parameters that cannot be accurately deter-
mined. This paper presents a design methodology based
on the concept of designing a system in such a manner
that it can be rigorously validated, or “design for valida-
tion.”

Introduction

The development of the Airbus A320 marked the be-
ginning of a new era in civil air transport technology—
dependence on flight-crucial digital avionics. However,
there are many indications that this step was premature,
given the current state of the practice in digital systems
design and validation[1]. Although the A320 was certified
by the British Civil Aviation Authority (CAA), Brian
Perry, head of Avionics and Electrical Systems for the
CAA admits, “It’s true that we are not able to estab-
lish to a fully verifiable level that the A320 software has
no errors. It’s not satisfactory, but it’s a fact of life”[2].
Airframers perceive that increased use of flight-crucial
digital avionics is an economic necessity. But how can
traditionally conservative airframers, such as Boeing and
McDonnell Douglas, safely make the transition to flight-
crucial avionics without jeopardizing their conservative
reputations?

There are numerous reports of serious incidents involv-
ing the use of computers in life-critical applications. For
example, “In 1983 a United Airlines Boeing 767 went into

*Presented at the 10th Digital Avionics Systems Confer-
ence (DASC), Los Angeles, Ca, Oct. 7-11, 1991.

a four-minute powerless glide after the pilot was com-
pelled to shut down both engines,” because the comput-
erized engine-control system, in an attempt to optimize
fuel efficiency, had ordered the engines to run at a rel-
atively slow speed causing ice buildup and subsequent
overheating[2]. John Garman, Deputy Chief of NASA
Johnson’s Spacecraft Software Division, stated, “It’s as
hard to predict a software failure as it is to predict what
your poker hand will be in the next deal”[2].

The current procedure (RTCA DO-178A) used in cer-
tification of flight-crucial software for civil air transports
is not so much a verification of the system itself as an
examination of the process used in its development. The
certification process consists of checking for completeness
of documentation and adherence to acceptable design and
development practices. According to Mike DeWalt of the
FAA, “Basically, we take a slice through the whole sys-
tem. That is, we pick a function like left aileron control
and follow it all the way down through testing and config-
uration management”[2]. Thus, the testing of the system
is clearly incomplete. Even after certification of the A320,
“various unsettling reports have appeared in the Euro-
pean press, regarding: engines unexpectedly throttling
up on final approach; inaccurate altimeter readings; sud-
den power loss prior to landing; stearing problems while
taxiing” [2].

There are two major reliability factors to be addressed
in the design of ultra-reliable avionics: hardware com-
ponent failures and design errors. Even though signifi-
cant increases in the reliability of future hardware devices
are envisioned, hardware component failures in the op-
erational environment will remain unavoidable. Further-
more, industry trends towards significantly reducing the
requirements for aircraft maintenance actions will mean
increased dependence on the ability of systems to tolerate
random hardware faults.

Design flaws are errors introduced in the development
phase rather than the operational phase. These include
errors in specification of the system, discrepancies be-
tween the specification and the design, and errors made
in implementing the design in hardware or software.

While it is convenient to consider these factors sepa-
rately, they are inexorably linked because of their strong
interactions. The need for tolerating random hardware
component failures requires the use of redundant hard-



ware components. The accompanying need for redun-
dancy management functions can greatly increase the
complexity of the operating system software and hard-
ware. Complexity increases the likelihood of serious, yet
latent, design flaws.

The design of a system entails making a series of de-
sign decisions and tradeoffs. These tradeoffs are typi-
cally made towards greater performance or lowest cost
without regard for increased design complexity and thus
lower reliability. For example, the developers of the Ad-
vanced Fighter Technology Integration (AFTI) F-16 de-
cided to use triplex, asynchronous channels because it
was believed that synchronous channels would be more
vulnerable to a single-point failure due to electromag-
netic interference (EMI) or lightning. However, this de-
cision greatly complicated the design and integration of
the system. During flight tests, the majority of the in-
flight anomalies found were attributed to design over-
sights during integration of systems developed separately,
and many of them were directly attributable to unex-
pected interactions between the asynchronous operation
and the redundancy management system[3, 4].

This paper outlines an approach for the development
of ultra-reliable digital avionics for civil air transports—
a “design-for-validation” philosophy that includes rigor-
ous application of formal methods. First, the basic con-
cept of the methodology is introduced, and the role of
formal methods is explored. The impact of the design-
for-validation philosophy on the system design process is
then demonstrated by two simple examples. More de-
tail about the design-for-validation methodology is then
given, followed by some concluding remarks.

Basic Concept

A commonly stated requirement for the flight criti-
cal components of commercial aircraft is a probability of
failure not greater than 10~ for a 10-hour mission time.
This reliability region is clearly outside the domain where
black-box testing is feasible. Thus, analytic techniques
must be used in addition to testing to demonstrate that
a system meets its requirements.

The validation problem for life-critical systems can be
decomposed into two major subtasks:

1. Quantification of the probability of system failure
due to physical failure.

2. Establishing that design errors are not present.

Since current technology cannot manufacture electronic
devices with failure rates low enough to meet the reliabil-
ity requirements directly, fault-tolerance strategies must
be utilized that enable the continued operation of the sys-
tem in the presence of component failures. The first sub-
task must therefore calculate the reliability of the system
architecture that is designed to tolerate physical failures.
This leads to the use of stochastic models of the fault
arrival and fault recovery behaviors of the system. Such
models depend critically upon the correctness of the soft-
ware and hardware which implements the fault-tolerance

of the system. For example, if the redundancy manage-
ment system improperly diagnoses a good processor as
failed or if a voter selects a faulty value, the assumptions
of the reliability model may be violated—leading to “use-
less” reliability numbers. Thus, the second subtask must
not only establish the absence of errors in the control
laws and their implementation, but also the absence of
errors in the underlying architecture which executes the
control laws. Furthermore, it must be demonstrated that
the reliability model is a complete and accurate model of
the implemented system. Since this cannot be rigorously
demonstrated through testing, analytic methods must be
used. Thus, the design-for-validation concept consists of
the following:

1. The system is designed in such a manner that a
complete and accurate reliability model can be con-
structed. All parameters of the model that cannot
be deduced from the logical design must be mea-
sured. All such parameters must be measurable
within a feasible amount of time.

2. During the design process, tradeoffs are made in fa-
vor of designs that minimize the number of mea-
surable parameters in order to reduce the valida-
tion cost. A design that has exceptional perfor-
mance properties yet requires the measurement of
hundreds of parameters (e.g., by time-consuming
fault-injection experiments) would be rejected over
a less capable system that requires minimal experi-
mentation.

3. The system is designed in a manner that enables
a proof of correctness of its logical structure. The
reliability model does not include transitions repre-
senting design errors.

4. The reliability model is shown to be accurate with
respect to the system implementation. This is ac-
complished analytically.

The Role of Formal Methods

The design-for-validation approach is based on the be-
lief that life-critical digital systems (software and hard-
ware) must be designed in a manner that enables rigor-
ous mathematical analysis in order to truly meet their
reliability goals. The mathematics for the design of a
software system or digital hardware is logic, just as calcu-
lus and differential equations are the mathematical tools
used in other engineering fields. The following steps are
performed to accomplish a formal verification.

1. Specification of system using languages based on
mathematical logic

2. Rigorous specification of desired properties as well
as implementation details

3. Mathematical proof that the implementation meets
the desired abstract properties

4. Use of semi-automatic theorem provers to insure the
correctness of the proofs



The first two steps by themselves represent the most lim-
ited application of formal methods. Nevertheless, the use
of specification languages based on mathematical logic
can offer tremendous improvement in the specification
process. Deficiencies and inconsistencies can be detected
early in the development process when their correction
is less costly. Step (3) represents the use of traditional
mathematical “hand” proofs to verify that the implemen-
tation meets the specification. Step (4) represents the
final and most rigorous application of formal methods—
the use of mechanical theorem provers to check the cor-
rectness of the proofs themselves.

Several projects have already demonstrated that for-
mal specification combined with informal design reviews
and walkthroughs is useful and cost-effective for uncover-
ing design faults. IBM’s Cleanroom software experience
has shown that “More than 90 percent of total product
defects were found before first execution,” (as opposed
to the customary 60 percent), while productivity was
“equal to or better than expected for ordinary software
development”[5]. Likewise, the parallel development of
the Transputer by two design teams concluded with the
team employing formal specification techniques complet-
ing the design on time and under budget (and receiving
the Queen’s award in recognition of this effort). However,
while the use of formal specification alone without proof
is an effective method for uncovering design faults early
in the design process, it is not rigorous enough for com-
plex, life-critical applications. Numerous design faults
were still uncovered during the testing of IBM software
developed using formal specification teamed with infor-
mal correctness arguments.

Even when the correctness of a system is proven and
checked using mechanical theorem provers, one cannot
guarantee that the probability of a design fault is zero.
The proofs could be based on incorrect axioms, the sys-
tem requirements could be incomplete or inaccurate, or
there could even be an error in the proof (e.g. the sys-
tem designer makes an error in designing the system and
comes up with an erroneous proof that happens to be
declared a valid proof by the mechanical theorem prover
because of a design fault in the theorem prover).

Formal methods is a powerful system design technique
for two reasons. First, the use of formal methods provides
a degree of confidence in the correctness of the system
that is impossible with less rigorous methods. But more
importantly, the application of formal methods forces the
system designer to examine his system design in intricate
detail and to keep that design simple and modular enough
to be rigorously analyzable. For example, Dijkstra recog-
nized that formal verification of software programs could
be greatly simplified by restricting the programmer to a
few basic control structures and eliminating the use of
“goto” statements, and this was his principle motivation
for introducing the idea of structured programming. Un-
fortunately, “Many popularizers of structured program-
ming have cut out the rigorous part about mathematical
verification in favor of the easy part about no gotos”[5].

System Design Examples

Figure 1: Over-simplified Model of Fault-Tolerant
Dual Processor

2AC N\ A
1 »{ 2 »{ 3
O O

2M\(1 - C)

Figure 2: Accurate Model of Fault-Tolerant Dual
Processor

The design-for-validation philosophy means that, ide-
ally, how the system is to be validated should be consid-
ered from the very first moments of the system design
process. The following simple examples illustrate this
process:

Example System 1

Suppose we must design a simple fault-tolerant system
with a probability of failure no greater than 2 x 107°
whose maximum mission time is 10 hours. We quickly
eliminate the use of a simplex processor since there is no
technology that can produce a processor with this low of a
failure rate. Thus, we begin to explore the notion of fault-
tolerance. We next consider the use of redundancy—how
about a dual? When the first processor fails, we will
automatically switch to the other processor. We develop
the Markov model shown in figure 1 to model such a
system.

Unfortunately, our design suffers from one major prob-
lem. It would be impossible to prove that any imple-
mentation behaves in accordance with this model. The
problem is that one cannot design a dual system that can
detect the failure of the first processor and switch to the
second 100% of the time.! Thus, we must accept the fact
that there is a single-point failure in our system and in-
clude that failure transition in our reliability model (see
figure 2).

Now we have a parameter in our model which must
be measured—C. This parameter represents the fraction
of single faults from which the system will successfully
recover. We must now determine whether this param-
eter can be measured in a feasible amount of time (i.e.
say less than year) with statistical significance. Anal-
ysis of this model using the SURE reliability analysis
program[6] shows the sensitivity of the system reliability
to C, as shown in Table 1. From this sensitivity analysis,

1 There are theoretical proofs that this cannot be done.



C LOWERBOUND
.9990 2.99600 x 107°
9992 | 2.59660 x 107¢
9994 | 2.19720 x 107¢
.9996 1.79780 x 10~
.9998 1.39840 x 107¢
1.000 | 9.99000 x 10"

UPPERBOUND
2.99900 x 10~
2.59920 x 107°
2.19940 x 10~°
1.79960 x 10—
1.39980 x 107¢
1.00000 x 107¢

Table 1: Sensitivity Analysis of System Reliability
to Parameter C.

Py
1073

1075 F e
10771 o

1072 -~

10—11 L _-—-'f/l 1
107 1078 10°¢
1-C

1072 10°

107*

Figure 3: Failure Probability of 5SMR with A = 10~°
as a Function of C

we can see that we must demonstrate that C is greater
than 0.9995. It can be shown that 20000 observations are
necessary to estimate this parameter to a reasonable level
of statistical significance. If we optimistically ? assume
that each fault injection requires 1 minute, then this val-
idation exercise would require 330 hours (i.e. 14 days).
In this case, we decide we can live with this amount of
testing and proceed to develop our system.

Example System 2

Now suppose we need to design a system with a reli-
ability goal of 1 — 1077, We decide to develop a nonre-
configurable 5-plex (5MR) using a processor with a fail-
ure rate of 107° /hour. We do not intend to use formal
methods to verify the correctness of the fault-masking
capability of the system, so we must rely on testing to
validate this property. Through testing we must estab-
lish that the probability of a single point failure, say C,
is sufficiently small. The probability of system failure is
plotted as a function of 1—C in figure 3. The value of C
must now be greater than 0.9999982.

It is easily shown that over a million fault injections
would be required to measure this parameter even if we

2 Theoretically one would have to observe the system for a
long time in case the fault has a large latency period. If one
assumes that fault latency is less than 1 minute one can censor
the experiment.

are very optimistic about the testing process. If each
injection required 1 minute, this would require almost
1.9 years of non-stop fault injections.

It would be nice if we could design our system so that
such an experiment is unnecessary. This is precisely the
notion of design for validation. The system is designed
so that a single point failure cannot cause system failure
(ie. C = 1), and this is demonstrated to be true by
formal proof. Thus, one uses the power of analysis to
eliminate experimental testing.

The Design-for-Validation Methodology

System design begins with a detailed description of the
system requirements written in a formal, mathematical
language. The system design then proceeds in a hier-
archical fashion from a highest-level specification of the
system down to a detailed implementation level. There-
fore, formal methods are applied to the total system, not
just to the individual subsystems, and all interactions
between subsystems are formally described and under-
stood. Of course, this represents the long-term ideal. In
the short term, formal methods will probably be applied
to individual critical subsystems first.

Although experimental methods cannot be used to
measure ultra-reliability directly, there are important ap-
plications of experimental methods. The reliability mod-
els used to analyze the system will depend on accurate
measurements of certain parameters, such as component
failure rates and system reconfiguration rates. Likewise,
the interface between the lowest level of formal system
description and the actual hardware implementation of
the system must be bridged by accurate descriptions and
measurements of the hardware functionality and timing.

Reliability Analysis

Reliability models are constructed based on a detailed
understanding of the failure modes and fault tolerance of
a system. A reliability prediction is only as accurate as
the reliability model of the system. Consequently, it is
essential that a formal proof be constructed to demon-
strate that the Markov model is an abstraction of the
implementation[7]. It is important to recognize that ex-
perimental methods cannot be used to demonstrate this
for ultrareliable systems. This would require as much
experimentation as direct life-testing of the system.

Additionally, the reliability estimate obtained for a
system is only as accurate as the parameters used in
the model. Therefore, the reliability model, and hence
the system behavior, must be based on parameters that
can be accurately measured or estimated through analy-
sis or experimentation. This would typically include the
failure rates of the hardware components and the recov-
ery time for detecting, isolating, and reconfiguring out a
failed component.

There are practical and effective computational ap-
proaches available today for calculating the reliability



of Markov models[6, 8]. The main area of concern is
that reliability models are often constructed with many
parameters that would require exhorbitant amounts of
testing to measure accurately. If rigorous validation is
to be accomplished, systems will have to be designed
differently—even if this means adding additional hard-
ware to the system to make the validation task tractable.

Design Faults

Reliability modeling techniques are satisfactory for val-
idating the failure probability due to random hardware
failures given that accurate component failure rate data
is available. The primary obstacle in validation of ultra-
reliable systems concerns design faults in functionality,
not random hardware failures. With random hardware
failures, the failures are assumed (and generally accepted
to be) independent between electrically isolated redun-
dant channels, and the failure probabilities of the repli-
cated units can be multipled, greatly increasing the over-
all system reliability prediction. When considering design
faults such as software bugs, however, it has been found
that errors in replicated versions, even though created by
different programmers using different programming lan-
guages, are not independent; i.e. the programmers tend
to make the same kinds of mistakes[9].

The concept of different replicated versions is called
“design diversity” and has been applied to both software
and hardware. It is generally accepted that design diver-
sity can result in increased reliability, but it is not possi-
ble to quantify the increase in the ultra-reliable regime.
These considerations leave validation of life-critical sys-
tems in a quandary: testing is not appropriate because
of the exhorbitant number of tests required. The design-
for-validation philosophy leads us to the approach of for-
mally verifying the correctness of each and every element
of the design. There is no attempt to measure the proba-
bility of system failure due to design faults. Once proven
correct, the design is assumed correct for all analyses.

Although formal verification can conceptually be car-
ried down to deeper and deeper levels of refinement (say
to the quantum-physics level), ultimately one reaches a
point where the cost/benefits do not justify verification
at a level any lower. For example, it is typically believed
that gate-level design is sufficiently low. At lower lev-
els CAD synthesis tools seem to be adequate to develop
fault-free designs. The implementation consequently is
built in terms of “atomic” components such as NAND
gates, crystal oscillators, latches; etc. These components
are described mathematically. The demonstration that
these components are described properly must be done
experimentally. For example, the drift rates of the clock
crystal oscillators is obtained by measurement.

Performance Analysis

Avionics systems typically consist of a number of tasks
that execute periodically. The flight-crucial avionics
tasks must reliably calculate the outputs needed to con-
trol the airplane according to strict real-time deadlines.

count

Hard upper bound

|

execution times

Figure 4: Histogram of Task Execution Times

Fundamentally, the validation must establish that all of
the flight-crucial tasks meet their deadlines.

Although probabilistic/statistical methods have been
successfully utilized to model general purpose operat-
ing systems, they have limited application to the perfor-
mance validation of ultrareliable, hard real-time systems.
In fact, the majority of performance analysis tools being
developed today are useful for estimating the average per-
formance levels of a system, but are of little use in esti-
mating in the tails of the performance distribution. Sim-
ulation 1s of little value in such estimation for the same
reason that software reliability cannot be quantified—you
cannot estimate what you cannot observe.

Since the set of tasks are constant and their schedule
is almost always static, the performance problem reduces
to a demonstration that each task’s execution time is
bounded. Unfortunately, experimental methods cannot
establish this property to the required level of reliabil-
ity. When one measures the execution times of a task
one obtains a histogram like the one shown in figure 4.
Collecting enough measurements to estimate with suffi-
cient statistical significance the probability that the hard
deadline would be exceeded is infeasible. Consequently,
one must use formal code analysis to demonstrate that
the execution times are strictly bounded. However, in
many cases such analytical methods will also be infeasi-
ble unless the code is developed (or redesigned) in such a
manner as to support the required analyses. In recogni-
tion of this problem, the proposed 00-55 British defence
standard defines strict coding practices that avoid imple-
mentations whose execution times cannot be analytically

bounded.

System Modification

In an ideal world, the system requirements would
be completely defined at the start of the project and
frozen—changes in the system requirements during de-
sign and implementation would be forbidden. However,
this is simply not a realistic scenario for large develop-
ment projects. The plea that John Garman of NASA



Johnson directs to the academic and software engineer-
ing community is to “help us to find ways to rehably
modify software with minimum impact in time and cost.”
Garman continues, “Maintaining software systems in the
field, absorbing large changes or additions in the middle
of development cycles, and reconfiguring software sys-
tems to “fit” never-quite-identical vehicles or missions
are our real problems today”[10]. The reason that mod-
ifying systems is difficult and expensive is because the
interactions between subsystems are subtle and hard to
determine. When a change is made to one subsystem, it
is extremely difficult to determine all of the other sub-
systems that are impacted by that change. However, if
a system has been formally verified using an automated
theorem prover system, then whenever a system mod-
ification is made, the user can determine which other
subsystems are impacting by rerunning the proofs. The
proofs for subsystems not impacted by the change will
remain valid, while the proofs of correctness of the im-
pacted subsystems will be reported as “unproved.” The
user then modifies the affected subsystems and their ac-
companying proofs, confident that no unexpected inter-
actions have been overlooked.

Concluding Remarks

Most of the formal methods research sponsored in the
United States has been targetted towards application of
formal methods to security applications. We believe that
application of formal methods will be the state of the
practice for civil air transports in 10 to 15 years. To
achieve this, much work must be done to develop for-
mal methods technology. Methods and tools for develop-
ing formally verified fault-tolerant system hardware ar-
chitectures, operating systems, and avionics application
software must be developed and demonstrated. Cur-
rent formal methods tools are tedious and difficult to
use, and they can only be effectively used by persons
skilled in formal mathematical reasoning. Over time, it
is expected that tool developers will come through with
creative breakthroughs to automate some of the tedious
steps that are now required. However, the development
of tools powerful enough to allow persons that are not
skilled in mathematical logic to perform rigorous proofs
of systems is very unlikely in the foreseeable future. The
logical thought processes needed to prove a system cor-
rect are far beyond the capabilities of today’s artificial
intelligence research. Therefore, if formal methods are to
gain widespread use, there must be a supply of logicians
to practice the craft.

As formal methods becomes the state of the practice,
reuse of proven hardware and software and reuse of proofs
themselves will become cost effective. Software reuse to-
day has gained only minimal acceptance for three rea-
sons: 1) development of new software is perceived as be-
ing relatively cheap, 2) most software is not built with
sufficient modularity to make its reuse practical, and 3)
rigorous specification is crucial to reusability. Formally
verified software is expensive, is typically built in a more
modular fashion to facilitate the proof effort, and is rig-

orously specified. Therefore, one is more likely to try
to reuse formally verified software. Even in situations
where new software or hardware must be developed, ex-
isting proven designs can be modified and parts of their
original proofs reused.

References

[1] N. G. Leveson, “Software safety: What, why, and
how,” Computing Surveys, vol. 18, June 1986.

[2] J. Beatson, “Is america ready to ‘fly by wire’?,”
Washington Post, Apr. 1989.

[3] J. Rushby, “Formal specification and verification of
a fault-masking and transient-recovery model for
digital flight-control systems.” To be published as
a NASA Contractor Report, 1991.

[4] D. A. Mackall, “Experiences with a flight-crucial
digital control system,” Technical Paper 2857,
NASA, Nov. 1988.

[5] H. D. Mills, M. Dyer, and R. C. Linger, “Cleanroom
software engineering,” IFEF Software, pp. 19-24,
Sept. 1987.

[6] R. W. Butler and A. L. White, “SURE reliability
analysis: Program and mathematics,” Technical Pa-
per 2764, NASA, Mar. 1988.

[7] L. Moser, M. Melliar-Smith, and R. Schwartz, “De-
sign verification of SIFT,” Contractor Report 4097,
NASA, Sept. 1987.

[8] R. W. Butler and S. C. Johnson, “The art of
fault-tolerant system reliability modeling,” Techni-
cal Memorandum 102623, NASA, Mar. 1990.

[9] J. C. Knight and N. G. Leveson, “An experimental
evaluation of the assumptions of independence in
multiversion programming,” ITEFE Transactions on
Software Fngineering, vol. SE-12, pp. 96-109, Jan.
1986.

[10] J. R. Garman, “The bug heard ’round the world,”
ACM SIGSOFT Software Fngineering Notes, vol. 6,
pp. 3-10, Oct. 1981.



